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Investigation in the linear approximation of the stability of the spiral flow of a 
viscous incompressible fluid between two coaxial cylinders due to an axial pressureJure 
gradient and rotation of the inner cylinder shows that several flow modes are observed, de- 
pending on the ratio of the governing parameters Re and T [1]. The general stability pat- 
tern is qualitatively confirmed by experiment [2]. 

The nature of the stability loss of the limiting cases of a spiral flow is diverse. In 
one case, in which the axial pressure gradient is absent, a circular Couette flow loses 
stability at a specified rotational velocity of the inner cylinder in the case of a small 
supercriticality, and a secondary steady-state flow -- stable Taylor vortices -- is weakly 
excited [3]. In the other limiting case, in which the inner cylinder is at rest and the 
axial pressure gradient is different from zero, the nature of the stability loss of the ~asic 
flow depends significantly on the wave number ~ of the perturbations [4J. 

For e close to the critical value ~,, as well as for all ~ on the upper branch of the 
neutral curve in the case of a small subcriticality, there exists a self-oscillating unstable 
mode which blends with a Poiseuille flow at a critical value of the Reynolds number. No 
self-oscillations exist in the vicinity of the Poiseuille flow in the case of a small super- 
criticality. 

A stable self-oscillating mode arises on the lower branch of the neutral curve starting 
from some ~ when Re passes through the critical value. 

An investigation of the natureof the stability loss of a spiral flow over a w~de range 
of variation of Reynolds and Taylor numbers and width of the gap between cylinders is of 
interest. 

The width of the gap between cylinders is adopted as the scale of length, and ~ is the 
dimensionless radius of the inner cylinder. The value of the axial component averaged over 
the transverse cross section of the channel is taken as the scale of velocity. 

The dimensionless value of the azimuthal velocity on the surface of the inner cylinder 
v characterizes the kinematics of the basic flow. The Reynolds number is formulated from 
the selected length and velocity scales, and the Taylor number, expressed in , terms of the 
selected dimensionless parameters, has the form ~ = 48 Re, where 8 = 0.25/2/~ + 2~.v is 
a dimensionless parameter which is independent of the viscosity. 

Following [4], let us seek the self-oscillating solution in the form 

v~ = (t /Re) w r (r, % z), v~ = (t/Re) w~ (r, r z) + uo (r), 

v~ = (t /Re) w~ (r, $, z) + zz o (r), p '  = ( t /Re) p (r, r z) + Po (r), 

where z = z' -- ct; vo(r), uo(r), and po(r) is the solution of the unperturbed steady-state 
problem. 

The problem of calculating in dimensionless variables the wave perturbations of a spiral 
flow v(O, Vo, Uo) with velocity components 

uo = A r  "~ - B I n  r - ?  C ,  v o = E / r - - D r  
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is a nonlinear problem for the eigenvalues of the phase velocity c of the waves 
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It is necessary to seek a nonzero solution possessing a specified period 2v/a along the z 
axis, where a is the wave number. The solution is sought in the form of series 

Re=Re. ~- 8 2 , w r = ~ ghWrh, 
k=i 

~hW~;, P ~ 8kPh, 
h=i k=i 

h=O h=I 

(].) 

(2)  

where Re, is the critical value of the Reynolds number according to the linear theory. Sub- 
stituting (2) into (i) and equating the coefficients of identical powers of ~, we obtain an 
infinite sequence of systems of equations for determination of Wrk, w~k, Wzk, Pk, and c k- 

For k = 1 the system of equations is homogeneous, and its solution is of the form 

,~ = ~ ( w / ~ + ~  + ~o~-~=+~)) .  p~ = v ( q / = + ~ )  + q- ~-~c~+~)).  

where wo(wor, w0~, Woz), qx is the solution of the linear problem [l] and m is the azimuthal 
wave number. For k = 2 the term in the expansion (2) for the velocity and pressure perturba- 
tion components has the form 

zv~ = r  + u~e~i(~=+'~'~) + ul~e-~(~=+"'~) ], 

w=~ = ~[u~  + ulce:~(cz=+'~) -~- ul~e-~(az+m~)], 

W2z = '~ [Uz + Ulze ~(a~+m~) + ulze -~(==+'~) ], 

p~ = ?= [q + q2e=i(==+~) + q2e-~i(==+'~)]. 

The f u n c t i o n s  UCUr, u.r Uz) , q s a t i s f y  t h e  f o l l o w i n g  s y s t e m  of  e q u a t i o n s :  

(ru~) + r u~ t ie  = / i ,  

u: + ~ - Re uou~ = f3, ( ru~) '  = 0 
r 

w l t h  t h e  b o u n d a r y  c o n d i t i o n s  u r = u~ = u z = 0 a t  r = ~, r = 1 + ~, where  

- - -  - ,  - , f m  - 

I~ = ~ (~o=~o,- ~o~o~) + ~o,wo~ + ~ . ~ o ,  + v (~o#o~ + ~o~o~); 
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For determination of the functions u~(u~r, u~, U~z), q~ we have the system 

(+ / 
(l'//lq~)' - -  1~'~1~ - -  e U i r  2 i m  He - -  -7-- q'~ = f~' 

u],  -4- tt~, __ nui~ - -  Re u~ uir - -  2i05 Re q,~ = / a ,  
r 

(ru~,)' + 2iaru~z + 2imu,~ = 0 

with the boundary conditions u~ r : u.1~" : Ulz : 0 at r : ~, r : ~ + i, where 

( ) f ,  = i 05WozWor + Wo~Wor + WorWor - - r ~  , 

f~ i r  T w + "-'7"-- -[- wo~w~ 

( o ) 
[ imVaRe ' 2m~ ] n = 2 i05 Re  (u o - -  c) + r -t- ~ -~- 2052 ; 

. . . .  " 0 " =  R e  V 
P~ r r g ' r 2 " 

The condition of solvability of the systems of equations for k > l is equality of the c k to 
zero for odd values of k. It is possible to convince oneself of this fact, since the solva- 
bility condition has the form 

2.~lct 2~Im ~A- i 

�9 [ .[ .I" fa (r) 0 (r)e-~(=z+m~)rdrdzd~ = O, 
o o 

where fk(r) are the right-hand sides of the equations of the system. The values OCO r, 0~, 
Oz) and Pc are the solutions of the conjugate system 

O'r--'7" O'r -- ( rb+Reu '~  +v'~ - -  --~-j2iml O~ + r'pc = O, 

' ( 2im~ ^ 

O' 0 ~ - ~ + ~  bO - r r ~ T r iarpo=O, Or--im -- -- -f O~ -- i050 z = O, 

b = i05 Re (% - e) + 7 r + 05~ + - 7 -  Vo , 

0 r - - - - 0 r  at r= [ ,  r = [ + l .  

I t  f o l l o w s  f r o m  t h e  s y s t e m  o f  e q u a t i o n s  f o r  k = 3 t h a t  w a ( w a r ,  w am, W a z ) ,  a n d  Pa a r e  t h e  sum 
o f  two h a r m o n i c s  w i t h  w a v e  n u m b e r s  a ,  m a n d  3 a ,  3m. The s o l v a b i l i t y  c o n d i t i o n  f o r  t h e  s y s t e m  
o f  e q u a t i o n s  f o r  t h e  a m p l i t u d e  o f  t h e  f i r s t  h a r m o n i c  i s  o f  t h e  f o r m  

- -  csRe Yl -6 ?~Y~ -~ f Ja = 0, (3 )  

J1 = j" i05 (WorO r ~ WoqpOqj -~- wozOz)rdr, 

0+'{ [  - , 

im 2 ] 

+ + - + + + + 
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+ + +  orU; + + + 

~+~ 
m 2Vo w [i~ m .~ 

~m m v ' U~Wo~ + i~ql] Oz} ,'dr. 

The sign of f is selected from the condition ya > 0. If the constant y2 determined from (3) 
turns out to be positive, then the existence of a supercritical self-oscillating mode follows 
from the results [SJ. In the opposite case only subcritical self-oscillations exist. 

Let us dwell on the procedure of specific calculations. For fixed Re and = belonging 
to the neutral curve, the phase velocity of the perturbations co is found as the solution of 
the linear problem for the eigenvalues by the method of differential eliming~ion with splicing 
at the critical point [6]. For known Re and co the eigenfunction wo(wor, w~, Woz~ ql is 
found by backward elimination from the already-known elimination relations. Normalization is 
performed at the critical point. The components 8r, 0~, ez of the conjugate system of equa- 
tions are calculated in an analogous way. In connection with the solution of a nonhomogeneous 
system of equations, the method of differential elimination is also used, and the elimination 
relations are of the form 

Z = AX ~ B, 

where A is the elimination matrix, Z and X are vectors formulated from the unknown functions 
and their derivatives, and the vector B is introduced due to the inhomogeneity of the equa- 
tions. 

The systems of ordinary differential equations for the elimination coefficients with the 
appropriate initial conditions on one of the boundaries are integrated by the Runge--Kutta 
method with automatic choice of step length. Integration from the second boundary is per- 
formed similarly. The initial values for the reverse elimination are found from the elimina- 
tion relations at the splicing point. The integrals J1, Ji, and J3 are calculated by Simp ~ 
son's method. 

As follows from [I], if the axial Reynolds numbers are small, convective instability de- 
velops initially for a specified rotational velocity of the inner cylinder, and then viscous 
instability arises as B increases. Such a pattern is characteristic of different gaps between 
the cylinders. 

In the limit of Re = 0 a stable self-oscillating mode branches off weakly from the con- 
vective-type neutral curve for supercritical values of the Taylor numbers [3]. 

The numerical calculations have shown that weak excitation of a Taylor instability is 
maintained for Re # 0. The stability diagram of a spiral flow in a narrow gap (~ = 50) in 
the Re, B plane is illustrated in Fig. i. Curve 1 specifies the variation of Re,~B) for con- 
vective instability, and the Re,(B) of the nubs of the viscous-type neutral curves 
varies along curve i'. The arrows indicate where self-oscillating modes exist. In the range 
of variation of Re in which convective instability precedes viscous instability, stable self- 
oscillations branch off from the viscous-type neutral curves in the case of weak supercriti- 
cality. The results of the calculation agree with the data of [7], where the nature of the 
branching of secondary self-oscillating modes is exhibited for Re~40and E = 50. 

For several values of B (B = 0.285, 0.36, and 0.16) an analysis was made of the nature 
of branching along the viscous-type ~Fig. 2, curves I, 2, B = 0.36, 0.285) and Taylor-type 
(curves 3, 4, B = 0.285, 0.16) neutral curves. When ~ > 0. i, a self-oscillating mode ~ranches 
off inside the neutral curves for a = ~,, as well as for all a on the upper and lower branches 
of neutral curves of the viscous and Taylor type, which corresponds to weak excitation of 
secondary instability. If B ~ 0.09, a wave number = appears on the upper branch of the 
viscous-type neutral curve for which a change occurs in the nature of the branching, i.e., a 
self-oscillating mode exists for Re < Re,, but no self-oscillations arise on the nub 
of the neutral curve in the case of supercritical values of the Reynolds number. As the rela- 
tive rotational velocity of the inner cylinder decreases further, the point of change in the 
nature of the branching is shifted from the upper branch of the neutral curve to the lower 
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one, and for B = 0 this point is characterized by the parameters s = 1.8 and Re = 9261, which 
agrees with the data of [4, 8]. 

When 8 ~ 0.08, the viscous instability becomes the most dangerous. It turns out that 
for such a flow mode in which convective instability develops against the background of a 
developed viscous instability, the nature of the branching of the seco~ary self-oscillations 
at the nub of the viscous-type neutral �9 curves changes, which has a fundamental meaning. 
If the self-oscillating mode for ~ = e, branches off in the direction of smaller Reynolds 
numbers, the excitation is of an entirely rigorous nature. 

The stability diagram in the Re, 6 plane of the spiral flow between coaxial cylinders 
when the radius of the inner cylinder is equal to one-half that of the outer cylinder ~ = i, 
m = 0) is illustrated in Fig. 3. Places where self-oscillating modes exist are indicated by 
arrows. The most dangerous perturbations are considered. Curve 1 corresponds to the varia- 
tion of Re,(8) for the nubs of the convectlve-type neutral curves. The critical value 
of the Reynolds numbers varies along curve l' with the variation in the tWiSt of the inner 
cylinder for viscous-type neutral curves. 

For small axial Reynolds numbers Re and in the range of variation of Re in which convec- 
tive instability precedes the viscous, branching off of secondary self-oscillating modes oc- 
curs within the neutral curves of the viscous and Taylor type, i.e., weak excitation, as in 
the two-dimensional case CE = 50), is characteristic both for Taylor and viscous instability. 
If ~0.09 and Re ~12,000, the flow mode is altered in the sense that viscous instability 
develops at first, and then Taylor vortices appear against its background. The nature of the 
excitation of secondary modes for viscous-type neutral curves is altered similarly to the two- 
dimensional case. The change in the nature of the branching is characterized by the param- 
eters 8 - 0.09, Re = 12,100, and ~ = 1.96. 

For e = s, and all e on the upper branch of the viscous-type neutral curve the self- 
oscillating solution branches off into the region of stability of the original laminar flow. 
For ~ < ~, and for all ~ on the lower branch a stable self-oscillating solution exists inside 
the loop of the neutral curve. A decrease in 8 results in the transition of the point of 
change of the branching nature to the lower branch of the neutral curve, and for 8 = 0 this 

7 7 0  



point is characterized by the following parameters: ~ ~ 1.72, Re = 21,600. The viscous-type 
neutral curves for B = 0 and 0.09 are illustrated in Fig. 4 ~urves 0 and I). 

The author expresses his gratitude to V. N. Shtern for his attention to this research 
and discussion of the results. 
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AN OPTICAL METHODFOR INVESTIGATING THE MICROSTRUCTURE 

OF TURBULENT FLOW 

E. G. Goncharov, L. G. Kovalenko, 
and E. I. Krasovskii 

UDC 535.411:551.463 

In a number of cases the study of the structure of small-scale high-intensity turbulence 
shows a deviation from Taylor's hypothesis which is manifested in incompatible values of time 
and spatial correlations [i]. In view of this the spatial structure of the flow cannot 5e 
estimated from a measurement of the autocorrelation of processes recorded by �9 transducer 
such as the various types of anemometers widely used to study turbulence. In this case it 
becomes important to use instruments with ananalyzing volume larger than the microscale of 
the phenomenon under study and methods enabling one to record the state of a chosen volume at 
a certain instant with the simultaneous visualization of the flow. In particular, this metho 
was used in [2] for the quantitative determinations of certain characteristics of turbulence 
by introducing tracer particles into the medium and recording their distribution through the 
volume photographically. In many cases shadow optical instruments [3, 4J are used for the 
visualization of optical inhomogeneities in transparent media. Their use has a number of 
advantages over visualization methods employing finely dispersed materials or dyestuffs, 
since they avoid inertial effects which always accompany the introduction of tracer particles 

We examine certain problems of the statistical analysis of flow domains whose dimensions 
are determined by the diameter of the light beam of the shadow instrument. Since therecorders 
used in investigating the microstructure of these domains are at best two-dimensional, wherea 
the field parameter being measured is a multidimensional quantity, it must be established how 
this affects the nature of the statistical field data being measured. One of the fundamental 
characteristics of a field is its wave-number power spectrum g~), in certain cases called th 
Wiener spectrum, and by analogy with one-dimensional processes having the meaning of the 
average_variance of the spectral components with spatial frequencies in a small interval 
around k divided by the size of this interval. The use of measuring devices having a dimen- 
sionality smaller than that of the field being measured is equivalent to the effect of spec- 
tral windows which change the characteristics of the estimate of the spectrum. The dimen- 
sionality of a spectral window corresponds to that of the recording device [5]. In other 
words, the width of a spectral window along one of the frequency coordinates is inversely 
proportional to the sample length with respect to the corresponding spatial or time coot- 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6~ 
pp. 78-83, November-December, 1978. Original article submitted May 25, 1977. 

0021-8944/78/1906-0771507.50 �9 1979 Plenum Publishing Corporation 771 


